Physical Chemistry of Colloids

Louis Georges Gouy 1854 – 1926 French physicist

images from Wikipedia chemist

David Leonard Chapman 1869 – 1958 British physical

Peter Joseph William Debye 1884 – 1966 Dutch-American physicist (Nobel Chem. 1936)

Otto Stern 1888 – 1969 German-American physicist (Nobel Phys. 1943)

Lecture 7, *April 10, 2019*

Manos Anyfantakis *Physics & Materials Science Research Unit*

Previously in ColloidsPhysChem…(I)

wetting regimes based on the contact angle

θ = 0^o

complete wetting

nagelgroup.uchicago.edu

partial wetting 0^o< θ < 90^o

non-wetting θ = 180^o

web.mit.edu/nnf/education/wettability/wetting.html

spreading parameter

$$
S = E_{dry\,sub} - E_{wet\,sub}
$$

$$
S = \sigma_{SG} - (\sigma_{SL} + \sigma_{LG})
$$

 $E_{dry\,sub}$: surface energy (per unit area) of dry substrate $E_{wet sub}$: surface energy (per unit area) of wet substrate

S≥0: complete wetting

- liquid spreads completely to lower its surface energy
- high $\sigma_{\scriptscriptstyle{\text{SG}}}$ (e.g., clean glass, silicon) & low $\sigma_{\scriptscriptstyle{\text{LG}}}$ (e.g. organic solvents) \rightarrow favorable conditions

S<0: partial wetting

- drop forms a spherical cap with contact angle θ (Θ equilibrium)
- *'mostly wetting'* & *'mostly non-wetting'* states

Previously in ColloidsPhysChem…(II)

simple experiments with sessile drops on *real surfaces* give irreproducible θ values

What is the reason for the θ data irreproducibility?

- only uppermost layers of the substrate determine θ; coatings/contaminants important!
- d ifference between θ when liquid is advanced over (θ_{adv}) or receded from (θ_{rec}) the surface

contact angle hysteresis $H = \Theta_{adv} - \Theta_{rec}$

- *origin of H*
- *- surface roughness*
- *- chemical heterogeneity*

Wenzel model

for rough surfaces: $A_{true} = rA_{smooth}$ *r*: rugosity factor (>1)

$$
cos\theta_{app} = r \frac{(\sigma_{SG} - \sigma_{SL})}{\sigma_{LG}} = r cos\theta_0
$$

- *size scale of roughness small*
- *drop larger than roughness size scale*

 θ_0 : intrinsic contact angle (Young)

Fig. 4-7: "Irreproducible" contact angles: (a) Surface composition is different between nominally identical bulk solids, (b) Contact angle depends on whether liquid is advancing or receding across solid surface: hysteresis.

Fig. 4-9: Origins of contact angle hysteresis: (a) Surface roughness, (b) Surface chemical (energetic) heterogeneity.

Cassie & Baxter model for heterogeneous surfaces consisting of two types of patches with θ_1 & θ_2

 $cos\theta_{app} = \varphi_1 cos\theta_1 + \varphi_2 cos\theta_2$

 φ_1, φ_2 : area fractions

Fig. 4-16: A composite surface with unwetted gas pockets on the rough solid surface.

Previously in ColloidsPhysChem…(III)

several applications require the change of wettability of solid materials

surface roughening (physical)

- can be achieved by sanding, plasma or chemical etching
- if $\Theta_{\rm 0}$ < 90° \Rightarrow wetting promoted if $\Theta_{\rm 0}$ • if θ_0 > 90° \rightarrow wetting hindered

surfactant addition (physical)

- decreases $\sigma_{\text{LG}} \rightarrow$ promotes wetting
- might increase/decrease σ_{SI} due to adsorption \rightarrow promotes/hinders wetting

enrich surface with specific atoms (chemical)

- oxygen enrichment \rightarrow promotes wetting
- treatment with plasma, corona discharge, flame; produce reactive radicals, limited permanence
- wet chemical treatment (strong bases or acids)
- fluorine enrichment \rightarrow wetting hindered
- adsorption of polymers containing F
- $\,$ treatment with silanes Y-Si-(OR) $_3$, Y-Si-Cl $_3$

Previously in ColloidsPhysChem…(IV)

interfaces divide electrically neutral bulk (solvent) phases → positive & negative charges separate in direction normal to interface

Origins of electric charge @ interfaces

preferential adsorption/desorption of lattice ions ions of the surface lattice of crystalline particles preferentially adsorb or desorb to the surface

specific adsorption of (foreign) charged species ions that are present in the system but are not an integral part of the dispersed phase adsorb on surface

ionization of surface functional groups chemical functional groups of the dispersed phase may lose or gain an $H^+ \rightarrow$ negative/positive charge

isomorphic substitution

mineral particles exchange one ion type in their lattice with another one of different valence but similar size

Interface charging in non-aqueous systems

electrostatic model of ion dissolution

- interaction of ions in a solvent is screened through solvent polarization
- $\;$ polarization \sim relative dielectric permittivity ε_{r} (dielectric constant)
- *water:* $\varepsilon_r \approx 80$; *alkane:* $\varepsilon_r \approx 2 \implies$ water polarized more strongly
- attractive potential Ψ between two charges +q & -q @ distance r

$$
\Psi = \frac{1}{4\pi\varepsilon_r\varepsilon_0} \frac{q^2}{r}
$$

- $\Psi \gg k_{B}T \rightarrow$ charges strongly associate, dissolved state unstable
- $\lambda_B =$ 1 $4\pi\varepsilon_r\varepsilon_0$ q^2 k_BT • $\Psi = k_{\text{B}}T \rightarrow B$ jerrum length:

aqueous systems

• $\Lambda_{\rm B} \approx 0.7$ nm, about twice the thickness of hydration shell (easy to dissolve salts in water)

non-polar media

- $\lambda_{\rm B} \approx 28$ nm
- for stable dissociation \rightarrow ions must "hide" in a structure providing a shell of substantial thickness, which is very difficult
- ions ''caged'' inside or adsorbed onto large structures (reverse micelles, polymers, NPs)

distance between the ions req. for stable dissociation

Models of the electric double layer

regardless of charging mechanism, a structure is formed such that surface charge is neutralized by a layer of counterions in solution

Helmholtz model

- two adjacent monolayers of opposite charge (''molecular capacitor'') @ distance δ
- δ: the hydrated radius of the counterions
- all of the potential drop occurs across δ
- $\bar{\sigma} =$ $\varepsilon \varepsilon_0$ δ • surface charge density: $\bar{\sigma} = \frac{\sigma_{\rm o}}{8} \psi_0$

Gouy-Chapman model

- counterion layer should be diffuse because of thermal motion \rightarrow uniform concentration
- equilibrium: balance between orienting effect of surface electric field & diffusion \rightarrow high [counterion] near surface, \downarrow with x

assumptions

- *ions point charges (they have no volume)*
- *no specific adsorption of ions*
- *ε^r of medium constant within the double layer*
- *surface charge uniform over the surface*

8

Basic electrostatics & the Poisson's equation

Coulomb's law

electrostatic force F between two point charges q_1 , q_2 : -proportional to the product of the charges -inversely proportional to the square of their distance r

Electric field

a vector field that is defined as the electrostatic force F on a hypothetical small charge q at a point due to Coulomb's law, divided by the magnitude of the charge

A collection of N charges q_i located at points $\overrightarrow{r_i}$ produces an electric field (superposition principle):

A charge density ρ(r') produces an electric field:

Gauss' law: the total electric flux through any closed surface in an \vec{E} is proportional to total electric charge enclosed within the surface

 $\nabla \cdot \vec{E} =$ ρ ε_0 $\begin{array}{lll} \textsf{Divergence theorem:} & $\overrightarrow{\nabla}\cdot \vec{E} = \frac{P}{P}$ \end{array} \qquad \textsf{Poisson's equation:} \quad \nabla$

$$
\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{\widehat{R}_i q_i}{|\overrightarrow{R}_i|^2}
$$

$$
\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \rho(\vec{r}')d^3r'
$$

$$
\oint_{S} \vec{E} \cdot d\vec{A} = \frac{1}{\varepsilon_{0}} q_{enclosed} = \int_{V} \frac{\rho}{\varepsilon_{0}} dV
$$

 $^{2}\psi(r) = -\frac{1}{r}$ ε_0 Poisson's equation: $\nabla^2 \psi(r) = -\frac{1}{r} \rho(r)$

$$
\left|\vec{F}\right| = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}
$$

$$
\vec{E} = \frac{\vec{F}}{q} \qquad |\vec{E}| = \frac{q}{4\pi\varepsilon_0 r^2}
$$

 $\sum_{i=1}^l |R_i|$

$$
(\dot{r}) = \frac{1}{4\pi\varepsilon_0} \iiint \frac{\vec{r} - \vec{r}'|^3}{|\vec{r} - \vec{r}'|^3} \rho(\dot{r}')d^3r
$$

Gouy-Chapman model of double layer: potential

consider a collection of ions in space

we calculate the force F_{i} on any charge q_{i} in this region exerted by the other charges q_i using Coulomb's law (vectorial summation)

$$
\overrightarrow{F_i} = q_i \sum_{j \neq i} \frac{q_j}{4\pi \varepsilon_r \varepsilon_0} \frac{\overrightarrow{r_{ij}}}{r_{ij}^3}
$$

$$
\underbrace{\psi(x,y,z)}_{\rho_{\rm e}(x,y,z)}
$$

Fig. 6-9: Ionic cloud in space; basis for derivation of Poisson's equation.

 $\overrightarrow{r_{ij}}$: spatial displacement vector from q_i to q_j

ion distribution ρ_e described by ''smearing'' them over the volume, [=] charge/vol

$$
\rho_e(x,y,z)=\sum_i z_i e n_i
$$

 n_i : number conc. of ion i $[=]$ #/vol

 z_i : valence of ion i

$$
\nabla^2 \psi = -\frac{1}{\varepsilon_r \varepsilon_0} \rho_e(x, y, z)
$$

 ε_0 : vacuum permittivity ε_r : relative permittivity

Poisson's equation

based on additive contribution ofcharge to the potential at any location

in one (x) dimension:

$$
\frac{d^2\psi}{dx^2} = -\frac{1}{\varepsilon_r \varepsilon_0} \sum_i z_i e n_i(x)
$$

both $\psi(\mathsf{x})$ and $\mathsf{n_i}(\mathsf{x})$ are dependent variables → *we need additional information to solve for any of them*

The Poisson-Boltzmann equation

we must consider the effect of diffusion on the ions

Boltzmann factor

ratio of the probability to find an ion at x to that of finding it in the bulk liquid $(x=\infty)$

 w_i : work required to bring ion i from x=∞ to x=x $w_i = z_i e \psi(x)$

$$
\frac{n_i(x)}{n_i(\infty)} = \exp\left(-\frac{w_i}{k_B T}\right)
$$

$$
w_i = z_i e \psi(x)
$$

Poisson-Boltzmann equation

$$
\frac{d^2\psi}{dx^2} = -\frac{1}{\varepsilon_r \varepsilon_0} \sum_i z_i en_{i,\infty} exp\left(-\frac{z_i e \psi}{k_B T}\right)
$$

simplify. 1: symmetric
z-z electrolyte
$$
\frac{d^2\psi}{dx^2} = -\frac{zen_{i,\infty}}{\varepsilon_r \varepsilon_0} \left[exp\left(\frac{ze\psi}{k_B T}\right) - exp\left(\frac{-ze\psi}{k_B T}\right) \right] = \frac{2zen_{i,\infty}}{\varepsilon_r \varepsilon_0} sinh\left(\frac{ze\psi}{k_B T}\right)
$$

 $\textsf{simplification 2:}\quad |z\psi_0|\leq 1$ k_BT \boldsymbol{e} **Debye-Hückel approximation**

linearized **Poisson-Boltzmann equation**

$$
\frac{d^2\psi}{dx^2} = \frac{2z^2e^2n_{\infty}}{\varepsilon_r\varepsilon_0k_BT}\psi = \kappa^2\psi
$$

unrealistic for most situations; a good qualitative picture of the Gouy-Chapman diffuse double layer

$$
\psi(x) = \psi_0 exp(-\kappa x)
$$

Coffee break

Time is chasing us…

The Debye screening length (I)

$$
\psi(x) = \psi_0 exp(-\kappa x)
$$
\n
$$
\frac{n_i(x)}{n_i(\infty)} = exp\left(-\frac{w_i}{k_B T}\right)
$$
\n
$$
C_i(x) = C_{i,\infty} exp\left[-\frac{z_i e}{k_B T} \psi_0 exp(-\kappa x)\right]
$$
\n
$$
w_i = z_i e \psi(x)
$$

 $\kappa =$

- diffuse part of the double layer: enriched in counterions & depleted in co-ions
- sum of the ion concentrations in the double layer larger than their total bulk concentration → *important for understanding electrostatic repulsion between approaching particles*

Debye screening length κ -1 a measure of the thickness of the double layer; κ[=] 1/length

$$
C_i(x) = C_{i,\infty} exp \left[-\frac{z_i e}{k_B T} \psi_0 exp(-\kappa x) \right]
$$

12 *for symmetrical electrolytes*

The Debye screening length (II)

Debye length κ -1

• a property of the electrolyte solution & a measure of its screening power (length scale over which charge carriers screen-out electric fields)

example: NaCl electrolyte solution

- \cdot $C = 1 \text{ M} \rightarrow \kappa^{-1} \approx 0.3 \text{ nm}$
- \cdot $C = 0.1 M \rightarrow \kappa^{-1} \approx 1 \text{ nm}$
- \cdot $C = 0.01 M \rightarrow \kappa^{-1} \approx 3 \text{ nm}$
- \cdot κ ⁻¹ decreases significantly with ion concentration & valence

For non-aqueous media (@ 25 ^oC):

$$
\kappa^{-1} = \frac{0.0343\sqrt{\varepsilon_r}}{\sqrt{I}} \left[= \right] nm
$$

For mixed electrolytes:

κ is expressed in terms of the ionic strength I:

$$
I = \frac{1}{2} \sum z_i^2 C_i \qquad \kappa = \sqrt{\frac{2000 e^2 N_{Av}^2 I}{\varepsilon_r \varepsilon_0 RT}}
$$

13 • the lower dielectric constants ($\varepsilon_{\scriptscriptstyle \! P}$) of organic solvents compared to water (~80) should give thinned double layers, but the much lower ion concentrations yield double layers which are more than one order of magnitude thicker

The Stern model

The Gouy-Chapman model provides a better approximation of reality compared to the Helmholtz model, however its predictions are sometimes unacceptable because:

- assumes that ions are point charges \rightarrow no physical limits for ions while they approach the surface
- treats all ions (of same valence) as being identical with respect to their adsorption

The Stern model

- modification of Gouy-Chapman model
- double layer consists of an inner & an outer portion
- *inner portion:* monolayer of counterions at a distance δ away from the surface; δ = ion radius
- *Stern plane:* the plane @ x=δ; all of charge in Stern layer resides here
- assumption: ions can specifically adsorb onto the Stern layer \rightarrow potential ψ_{0} - ψ_{δ}
- *outer portion:* this is a Gouy-Chapman diffuse layer, as described before

Fig. 6-17: Stern model of the electric double layer.

Fig. 6-18: Potential profiles in the case of specific adsorption of counterions (left) and coions (right), in accord with the Stern model. $\mathbf{14}$

The zeta potential (I)

Consider a negatively charged colloid particle dispersed in water

there are three important locations:

- the (physical) particle surface $(\psi_{\rm O})$
- the Stern layer (ψ_δ)
- the slipping plane

The diffuse layer can move under the influence of tangential stress

Slipping plane

conventionally introduced plane that separates mobile fluid from fluid that is attached to the surface

Zeta (ζ) potential

the electric potential corresponding to the slipping plane, [=] V or mV

- not equal to Stern potential or surface potential (different locations)
- practical for determining stability against aggregation

The zeta potential (II)

ζ potential of colloidal particles strongly depends on the dispersion pH

Basic continuous phase

• OH⁻ ions decrease ζ; particles tend to aqcuire more negative charge

Addition of acid → **intermediate pH**

- isoelectric point: charge is neutralized
- minimum colloidal stability

Further acid addition→ **acidic conditions**

• H⁺ ions increase ζ, particles positively charged

ζ potential (& stability) can be adjusted by additives (e.g. surfactants)

Addition of cationic surfactant to a dispersion of negatively charged particles

- charge reversal (negative \rightarrow positive) with increasing surfactant concentration
- dependent on surfactant type

Langmuir **2015**, *31*, 4113

Figure 2. Zeta potential measurements of mixtures of anionic PS particles (PS-AA, 500 nm diameter, 2 mg/mL) with anionic (SDS) or cationic (DTAB, CTAB) surfactants at various concentrations. 10