Physical Chemistry of Colloids

Lecture 2 February 27, 2019

Manos Anyfantakis Physics & Materials Science Research Unit

Previously in ColloidsPhysChem...(I)

IUPAC: International Union of Pure & Applied Chemistry

Previously in ColloidsPhysChem...(II)

100 mL of olive oil in 1L of water: i) macroscopic phase separation ii) emulsion in a beaker with 2R= 10 cm

Colloids & **Interfaces** are two concepts that are interrelated !

dreamstime.com

 $A_{int,i} = 7.85 \times 10^{-3} \text{ m}^2$

 $A_{int.\,ii} = 6.03 \times 10^2 \text{ m}^2$

6Dt

PS spheres, $2R=1 \mu m$ dispersed in water, T= 20 °C

Stokes-Einstein-Sutherlandrandom walk in 3D
$$D = \frac{k_B T}{6\pi\eta R}$$
 $\langle l^2 \rangle = 6Dt$

Time scale (Brownian motion): † = 0.86 ms **Length scale:** 1 μ m ~ λ of visible light

microscopic systems: ~ 10^{-12} - 10^{-10} s microscopic systems: ~ 10⁻¹⁰ - 10⁻⁹ m

Colloids belong to the class of *mesoscopic systems* (typical for Soft Matter)

Previously in ColloidsPhysChem...(III)

Thermal energy

internal energy present in a system in a state of thermodynamic equilibrium by virtue of its temperature

@ room T (=20 °C): $E_{th} = k_B T_{room} \approx 4 \times 10^{-21} J$

Interfaces & interfacial tension

fluid-fluid interfaces

- far simpler than F-S or S-S interfaces
- we can assume mechanical & diffusional equilibrium
- morphologically & energetically homogeneous
- shear stress-free @ rest

the simplest fluid interface: water-air

stratum of inhomogeneity very thin: ~ few \AA to nm \rightarrow treated as a membrane with zero thickness

a fluid interface contracts \rightarrow *minimum area*

zero-thickness membrane model to quantify the "contractile tendency" of fluid interfaces (Thomas Young, 1805)

interfacial tension force/length along the dividing line @ P

$$\sigma = \frac{\mathrm{d}|F|}{\mathrm{d}l}$$

$$\delta W = \sigma dA$$

unit (SI): N/m or J/m² more common: mN/m

Intermolecular forces

Intermolecular forces

- they mediate interactions between molecules; can be attractive or repulsive
- responsible for physical properties of substances (e.g. T_{melt} & T_{boil}, density)
- weak compared to intramolecular forces

Types of attractive intermolecular forces

- dipole-dipole forces
- hydrogen bonding
- van der Waals forces
 (Keesom, Debye, London dispersion)

Intermolecular forces & interfacial tension

Interfacial tension may be interpreted in terms of unbalanced intermolecular forces

forces @ in the bulk: acted upon equally in all directions forces @ the liquid surface: directed inward toward the interior

→ net inward attraction pulls surface molecules toward the interior; surface tries to minimize its area

interfacial tension increases with increasing intermolecular forces

Air-liquid interfacial tension of simple liquids

"surface tension" typically used when one of the fluid phases is gas

lowest σ values for liquefied gases

common solvents: σ = 20 -70 mN/m (except silicone oils & fluorocarbons)

Fig. 2-3: Surface tension dependence on temperature for a variety of liquids: (1) water, (2) furfural, (3) chlorobenzene, (4) acetic acid, (5) carbon tetrachloride, (6) ethanol, (7) *n*-octane. Dashed line has slope: -0.1 mN/m·K, in reasonable agreement with that for most liquids.

Cable 2-1: Surface tension values for various liquids				
Liquid T Sur		Surface Tension		
Helium	-272 °C	0.16 mN/m		
Hydrogen	-254	2.4		
Perfluoropentane	20	9.9		
Oxygen	-183	13.2		
Silicone (HMDS)	25	15.9		
n-Heptane	20	20.3		
Ethanol	20	22.0		
Benzene	20	28.9		
Olive oil	18	33.1		
Ammonia	-33	34.1		
Nitric acid	21	41.1		
Glycerol	20	63.4		
Methylene iodide	20	67.0		
Water	20	72.7		
Sodium chloride	801	114.		
Lithium	181	394.		
Zinc	360	877.		
Iron	1530	1700.		

simple liquids: $\sigma = f(T)$

typically: $d\sigma/dT \approx -0.1 \text{ mN/m K}$

Air-liquid interfacial tension of solutions

the surface tension of solutions depends both on T & composition

usually in-between σ of the pure components (but less than the mole-fraction-average value)

σ of water increases by dissolved salts (weakly for low [salt])

σ of water strongly decreases by organic solutes (especially surfactants)

van der Waals interactions (I)

Johannes van der Waals (1837-1923)

- Dutch theoretical physicist
- equation of state for gases & liquids
- Nobel prize in Physics (1910)

Ideal gas law (Clapeyron, 1834)

- assumes point particles & no interactions between molecules

PV = nRT

- the same for all gases

van der Waals equation of state (1873)

- takes into account molecular size & interaction forces
- a, b > 0; characteristic of each gas
- b: correction for finite molecular size
 a: correction for intramolecular forces

$$\left[P + a\left(\frac{n}{V}\right)^2\right]\left(\frac{V}{n} - b\right) = RT$$

Coffee break

pinterest.com/pin/181199584981085462/

What would be the consequence(s) of water having σ = 72 N/m instead of 72 mN/m ?

van der Waals interactions (II)

van der Waals (vdW) interations: a general term to describe a "family" of intermolecular forces

Keesom interactions

- permanent dipole permanent dipole
- net effect after averaging over different relative orientations: *attraction*

Debye interactions

- permanent dipole induced dipole
- the latter is induced by the permanent dipole

London dispersion forces

- induced dipole induced dipole
- e⁻ densities in nearby molecules redistribute via fluctuations to minimize energy

London

dispersion forces

van der Waals interactions (III)

$$\begin{split} V_{Keesom} &= \frac{-\mu_1^2 \mu_2^2}{3(4\pi\varepsilon_0)^2 k_B T r^6} \end{split} \qquad \begin{array}{l} & V_{Keesom} = -\frac{B_{polar}}{r^6} & \mu : \text{dipole moment} \\ & \varepsilon_0 : \text{vacuum permittivity} \\ & k_B : \text{Boltzmann's constant} \\ & V_{Debye} = \frac{-\mu_1^2 \alpha_2^2}{(4\pi\varepsilon_0)^2 r^6} \end{array} \end{aligned} \qquad \begin{array}{l} & V_{Debye} = -\frac{B_{induced}}{r^6} & T : \text{temperature} \\ & r : \text{interaction distance} \\ & \alpha : \text{polarizability} \\ & i : \text{Planck's constant} \\ & v : \text{absorption frequency} \end{array} \end{split}$$

All attractive vdW interactions vary as $1/r^6$

$$V_{attractive} = -\frac{B_{attractive}}{r^6}$$

n

Repulsive interactions

- strong repulsion when electron clouds overlap (hard-core repulsion)
- manifestation of Pauli's exclusion principle -

$$V_{repulsive} = \frac{B_{repulsive}}{r^{12}}$$

distance

van der Waals interactions (IV)

Total interaction between two molecules: V_{attractive} + V_{repulsive}

- δ: r for which V_{tot} = 0 (molecular diemeter)
- ɛ: depth of potential well

$$V_{tot} = 4\varepsilon \left[\left(\frac{\delta}{r} \right)^{12} - \left(\frac{\delta}{r} \right)^{6} \right]$$

force of interaction:
$$F_{tot} = \frac{dV_{tot}}{dr}$$

van der Waals interactions (V)

General features of vdW forces

- non-directional but strongly dependent on relative orientation of interacting partners
- comparatively weak (~ 1k_BT_{room})
- occur to some extent between any couple of molecules
- short range (attraction: r⁻⁶)

TABLE 10.2 Percentage of the Debye, Keesom, and London Contributions to the van der Waals Attraction Between Various Molecules

chemguide.co.uk		Percentage contribution of				
Compound	μ (debye)	$\frac{\alpha}{4\pi\varepsilon_0} \times 10^{30}$ (m ³)	β×10" (Jm*)	Keesom (permanent- permanent)	Debye (permanent- induced)	London (induced- induced)
CCL	0.00	10.70	4.41	0.0	0.0	100.0
Ethanol	1.73	5.49	3.40	42.6	9.7	47.6
Thiophene	0.51	9.76	3.90	0.3	1.3	98.5
t-Butanol	1.67	9.46	5.46	23.1	9.7	67.2
Ethyl ether	1.30	9.57	4.51	10.2	7.1	82.7
Benzene	0.00	10.50	4.29	0.0	0.0	100.0
Chlorobenzene	1.58	13.00	7.57	13.3	8.6	78.1
Fluorobenzene	1.35	10.30	5.09	10.6	7.5	81.9
Phenol	1.55	11.60	6.48	14.5	8.6	76.9
Aniline	1.56	12.40	7.06	13.6	8.5	77.9
Toluene	0.43	11.80	5.16	0.1	0.9	99.0
Anisole	1.25	13.70	7.22	5.5	6.0	88.5
Diphenylamine	1.08	22.60	14.25	1.5	3.7	94.7
Water	1.82	1.44	2.10	84.8	4.5	10.5

Source: Dipole moments and polarizibilities from A. L. McClellan, Tables of Experimental Dipole Moments, W. H. Freeman, San Francisco, CA, 1963.

Hydrogen bonding (I)

IUPAC definition

typically written: **D-H···A**

D: H-bond donor (N, O, F, S)

A: H-bond acceptor (N, O, F, S)

possesses a lone pair of e-

H-bond is an attractive interaction between an H atom from a molecule or a molecular fragment X-H in which X is more electronegative than H, & an atom or a group of atoms in the same or a different molecule, in which there is evidence of bond formation.

ww2.chemistry.gatech.edu/~lw26/structure/molecular_interactions/mol_int.html

Hydrogen bonding (II)

water: the perfect example of H-bonding

- each water molecule can form 4 H-bonds with surrounding water molecules
- 2 lone e⁻ pairs + 2 δ⁺ H
- reason for very high T_{boil}

chem.ucla.edu/~harding/IGOC/H/hydrogen_bond_donor.html

Hydrogen bonding (III)

often described as a dipole-dipole interaction, but H-bonds also show features of covalent bonds

- directional & with limited number of interaction partners
- ideal bond angle: colinear with D-H axis
- directionality → restricts number of neighbours water: max 4 neighbours; non-H-bonding liquids: many more

- strong
 - typical energies ~ 5-30 kJ/mol
 - k_BT @ 25 °C = 2.47 kJ/mol
 - → dynamically formed & broken

- F-H···:F (161.5 kJ/mol or 38.6 kcal/mol), illustrated uniquely by HF2⁻, bifluoride
- O-H…:N (29 kJ/mol or 6.9 kcal/mol), illustrated water-ammonia
- O-H…:O (21 kJ/mol or 5.0 kcal/mol), illustrated water-water, alcohol-alcohol
- N-H…:N (13 kJ/mol or 3.1 kcal/mol), illustrated by ammonia-ammonia
- N-H···:O (8 kJ/mol or 1.9 kcal/mol), illustrated water-amide
- HO-H…:OH₃⁺ (18 kJ/mol^[13] or 4.3 kcal/mol)

wikipedia

Comparison of intermolecular forces

Force	Model	Basis	E (kJ/mol)	Example
Ion-dipole	••••••	Ion charge– dipole charge	40-600	Na+····O
H bond	δ [−] δ ⁺ δ [−] −A−H·····:B−	Polar bond to H– dipole charge (high EN of N, 0	10–40 O, F)	:ö—н…:ö—н н н
Dipole-dipole		Dipole charges	5-25	I-CII-CI
Ion-induced dipole	••••••	Ion charge– polarizable e [–] cloud	3-15	Fe ²⁺ ····O ₂
Dipole-induced dipole	_(Dipole charge– polarizable e ⁻ cloud	2-10	H—CI····CI—CI
Dispersion (London)		Polarizable e ⁻ clouds	0.05-40	F—F····F—F

chem.fsu.edu/chemlab/chm1046course/interforces.html

Contribution of intermolecular forces to $\boldsymbol{\sigma}$

Table 2-2: Components of surface tension (in mN/m at 23.±0.5°C). From [Fowkes, F. M., Riddle, F. L., Pastore, W. E., and Webber, A. A., *Colloids Surfaces*, **43**, 367 (1990).]

Liquid	σ	$\sigma^{ extsf{d}}$	$\sigma^{ ext{ab}}$	Туре
Water	72.4	21.1	51.3	both
Glycerol	63.4	37.0	26.4	both
Formamide	57.3	28.0	29.3	both
Methyl iodide	50.8	50.8	0	Neither
a-Bromonaphthalene	44.5	44.5	0	Neither
Nitrobenzene	43.8	38.7	5.1	Both
Dimethylsulfoxide	43.5	29.0	14.5	Both
Aniline	42.5	37.3	5.1	Both
Benzaldehyde	38.3	37.0	1.3	Both
Pyridine	38.0	38.0	0	Basic
Formic acid	37.4	18.0	19.4	Both
Pyrrole	37.4	32.6	4.8	Both
Dimethylformamide	36.8	30.2	6.6	Both
1,4-Dioxane	33.5	33.5	0	Basic
cis-Decaline	32.2	32.3	0	Neither
Squalane	29.2	29.2	0	Neither
Acetic acid	27.6	22.8	4.8	Both
Chloroform	27.1	27.1	0	Acidic
Methylene chloride	26.6	26.6	0	Acidic
Tetrahydrofuran	26.5	26.5	0	Basic
Ethyl acetate	25.2	25.2	0	Basic
Acetone	23.7	22.7	1.0	Both
Ethanol	22.2	20.3	1.9	Both
Triethylamine	20.7	20.7	0	Basic
Ethyl ether	17.0	17.0	0	Basic

$$\sigma = \sigma^{d} + \sigma^{p} + \sigma^{i} + \sigma^{H} + \sigma^{m} + \dots$$

$$\sigma^{d}: \text{ London force contribution}$$

$$\sigma^{p}: \text{ Keesom force contribution}$$

$$\sigma^{i}: \text{ Debye force contribution}$$

$$\sigma^{H}: \text{ H-bond contribution}$$

$$\sigma^{m}: \text{ metallic bond contribution}$$

condensed-phase media: Keesom & Debye negligible

example $\sigma_{water} = 72 \text{ mN/m}$ $\sigma^{p} + \sigma^{i} = 1.4 \text{ mN/m}$

for most liquids:

$$\sigma = \sigma^d + \sigma^{ab}$$

 σ^{ab} : acid-base interactions