Physical Chemistry of Colloids

Mater. Today 2015, 18, 273

2 µm

Lecture 5, March 20, 2019 Manos Anyfantakis Physics & Materials Science Research Unit

Previously in ColloidsPhysChem...(I)

surfactants in solution

the hydrophobic tail is surrounded by an 'iceberg' of structured water

adsoprtion to (LG or LS) interface

 $\Delta G_{ad} = \Delta H_{ad} - T\Delta S_{ad}$

- 'iceberg' water molecules released into the solution \rightarrow large ΔS increase
- ΔH_{ad}: often small; either < 0 (tail-tail vdW attractions) or > 0 (electrostatic head repulsion)

 ΔG_{ad} large & negative \rightarrow adsorption favorable

application: aqueous dispersions of hydrophobic NPs

particles aggregate if not stabilized (hydrophobic effect)

addition of surfactant

- \rightarrow surfactants adsorb on NP surface
- \rightarrow hydrophilic coating around the NPs
- \rightarrow repulsive forces between NPs preventing aggregation

Previously in ColloidsPhysChem...(II)

low [surf.]: some water molecules
replaced by surfactants

hydrocarbon tails interact via London forces (weaker than Hbonding) $\rightarrow \sigma$ is reduced

σ decrease stronger with more surf. adsorbed @ the interface

log surfactant concentration

interface saturation: addition of more surfactant does not decrease σ further

micelle self-assembly: spontaneous formation of aggregates to minimize contact of apolar chains with the polar solvent (hydrophobic effect)

From Robert J. Hunter, 'Foundations of Colloid Science', Oxford University Press, 2002

Fig. 3-20: Schematic diagram of physical property changes of aqueous solutions of sodium dodecyl sulfate at 25°C as a function of concentration.

Previously in ColloidsPhysChem...(III)

surfactants to form a space-filling sphere \rightarrow geometric constraints on heads & tails

Fig. 3-31: Micelles as shape-filling structures, depend upon the size and shape characteristics of the monomer.

 l_c : max. length of apolar tail

Jacob Israelachvili ~1

RSC Advances 2017, 7, 5733

Previously in ColloidsPhysChem...(IV)

wetting

the ability of a liquid to maintain contact with a solid surface, resulting from intermolecular interactions when the two are brought together

wettability

the degree of wetting; determined by the balance between adhesive & cohesive forces

three-phase contact line line where the solid (S), liquid (L) & gas (G) phases meet

contact angle (θ)

the angle that is formed between the tangent to the LG interface @ the contact line & the LS interface horizontal

- a quantitative measure of the liquid-solid interaction
- macroscopic quantity → integral result of long-range intermolecular forces in the three phases

Young's equation

- force equilibrium @ contact line
- three interfaces \rightarrow three σ normal to contact line, they minimize area
- assumes perfectly flat & rigid surface (ideal surface)
- reality: rough surfaces, finitely rigid smooth surfaces

$$\sigma_{SG} = \sigma_{SL} + \sigma_{LG} \cos\vartheta$$

Spreading parameter & wetting regimes

wetting regimes based on the contact angle

nagelgroup.uchicago.edu

spreading parameter

 $S = E_{drv \ sub} - E_{wet \ sub}$

 $S = \sigma_{SG} - (\sigma_{SL} + \sigma_{LG})$

partial non-wetting $90^{\circ} < \Theta < 180^{\circ}$

non-wetting $\theta = 180^{\circ}$

web.mit.edu/nnf/education/wettability/wetting.html

 $E_{dry \ sub}$: surface energy (per unit area) of dry substrate $E_{wet \ sub}$: surface energy (per unit area) of wet substrate

S≥0: complete wetting

- liquid spreads completely to lower its surface energy
- high σ_{SG} (e.g., clean glass, silicon) & low σ_{LG} (e.g. organic solvents) → favorable conditions

S<0: partial wetting

- drop forms a spherical cap with contact angle θ (@ equilibrium)
- 'mostly wetting' & 'mostly non-wetting' states

Examples of contact angle values

Solid	Liquid	Contact angle (°)
Glass	Water	0
"	Benzene	0
Silica	Water	0
"	Acetone	0
"	Benzene	0
Anatase (TiO ₂)	Water	0
Tin oxide (SnO ₂)	Water	0
Barium sulfate	Water	0
Graphite	Water	86
"	Benzene	60
Stibnite (Sb ₂ S ₅)	Water	84
"	"	38
Talc	Water	88
"	"	52
"	CH_2I_2	53
Hexadecyl alcohol	Water	50-72
Paraffin	Water	105
Teflon	Water	110
Glass	Mercury	135
Steel	Water	70-90

Table 4-2: Contact angle values (liquids on solids against air)

tables of θ are generally not found in literature; reason: *irreproducibility*

Contact angle hysteresis & its origin

simple experiments with sessile drops on real surfaces give irreproducible θ values

addition/removal of liquid

- increasing V_{drop} \rightarrow larger θ decreasing V_{drop} \rightarrow smaller θ

drop on an inclined substrate

θ on upper (elevated) side $\langle \Theta$ on lower side

v=1wh0VtnCIEs

advancing and receding contact angles captured by tilting base method

What is the reason for the θ data irreproducibility? only uppermost layers of the substrate

- determine Θ ; coatings/contaminants important!
- difference between θ when liquid is advanced over (Θ_{adv}) or receded from (Θ_{rec}) the surface

contact angle hysteresis $H = \theta_{adv} - \theta_{rec}$

origin of H

- surface roughness
- chemical heterogeneity

Fig. 4-7: "Irreproducible" contact angles: (a) Surface composition is different between nominally identical bulk solids, (b) Contact angle depends on whether liquid is advancing or receding across solid surface: hysteresis.

Fig. 4-9: Origins of contact angle hysteresis: (a) Surface roughness, (b) Surface chemical (energetic) heterogeneity.

Wenzel model for rough surfaces

real surfaces are generally both rough & energetically heterogeneous

solidified ink drops on bond paper

polyphenyl ether drop spreading on machined Al

Wenzel model

for rough surfaces: $A_{true} = rA_{smooth}$ r: rugosity factor (>1)

$$cos\theta_{app} = r \frac{(\sigma_{SG} - \sigma_{SL})}{\sigma_{LG}} = rcos\theta_0$$

- size scale of roughness small
- drop larger than roughness size scale

 θ_0 : intrinsic contact angle (Young)

effect of roughening

wetting liquid ($\Theta_0 < 90^\circ$): wettability increases non-wetting liquid ($\Theta_0 > 90^\circ$): wettability decreases

Cassie-Baxter model for chemically heterogeneous surfaces

Cassie & Baxter considered heterogeneous surfaces consisting of two types of patches with $\theta_1 \& \theta_2$

case I: pores (filled with air) on surface

- vapor gaps: liquid does not wet the solid
- effective contact angles: θ_1 , $\theta_2 = 180^\circ$

 $cos\theta_{app} = \varphi_1 cos\theta_1 - \varphi_2$

ultrahydrophobic surfaces ($\theta > 130^{\circ}$) are based on such structures

 $cos\theta_{app} = \varphi_1 cos\theta_1 + \varphi_2 cos\theta_2$ φ_1, φ_2 : area fractions

Fig. 4-16: A composite surface with unwetted gas pockets on the rough solid surface.

Fig. 4-17: Water droplets on an "ultra-hydrophobic" surface created by coating wood with "Lotus Spray," an aerosol of hydrophobic nanoparticles. From [http://nanotechweb.org/cws/ article/tech/16392/1/0611102.]

case II: pores pre-filled with wetting liquid

 $cos\theta_{app} = \varphi_1 cos\theta_1 + \varphi_2$

• wetting out ($\Theta \rightarrow 0^{\circ}$) often observed

Coffee break

Mario noticed that spider webs are very effective in capturing water in dewy mornings. Why?

chemistryworld.com/news/how-spidersilk-soaks-up-water/3001990.article

Critical surface tension & wetting series

 θ measurements \rightarrow information on the surface energetics of solids (Young's eq.)

high energy solids (e.g. metals)

- completely wet by most liquids
- $S > 0 \rightarrow \sigma_{SG} \sigma_{SL} > \sigma_{LG}$

low energy solids (e.g. polymers)

- intermediate wettability calls for quantitative characterization
- Zisman plots: cosθ_{adv} of a given smooth solid vs. σ of different liquids
- σ_c: critical surface tension; at & below σ_c the solid is completely wet
- fluorinated surfaces have extremely low σ_c; close-packed -CF₃ practically unwetttable @ RT!
- wetting series based on atomic constitution (polarizability)
 F < H < Cl < Br < I < O < N

Table 4-4: Critical surface tension of surfaces in terms of their chemistry. From [Osipow, L. I., **Surface Chemistry**, p.251, ACS Monograph Series No. 153, Reinhold, New York, 1962.]

Surface	Chemical structure	σ_{c} (mN/m)
Perfluorolauric acid, monolayer	CF ₃ , close-packed	5.6
Perfluorobutyric acid, monolayer	CF ₃ , less closely packed	9.2
Perfluorokerosene, thin liquid film	CF ₂ , some CF ₃	17.0
Polytetrafluoroethylene, solid	CF ₂	18.2
Octadecylamine, monolayer	CH ₃ , close-packed	22.0
α -Amyl myristic acid, monolayer	CH ₃ and CH ₂	26.0
2-Ethyl hexyl amine, monolayer	CH ₃ and CH ₂	29.0
n-Hexadecane, crystal	CH ₂ , and some CH ₃	29.0
Polyethylene, solid	CH ₂	31.0
Naphthalene, crystal	, edge only	25.0
Benzoic acid, monolayer	, edges and faces	53.0
2-Naphthoic acid, monolayer	, edges and faces	58.0
Polystyrene, solid	CH ₂ , some	32.8-43.3
Polyethylene terephthalate, solid	\bigcirc , CH ₂ , ester	43.0
Nylon, solid	CH ₂ , amide	42.5-46.0

13

Surface treatment for changing wettability

several applications require the change wettability of solid materials

surface roughening (physical)

- can be achieved by sanding, plasma or chemical etching
- if $\theta_0 < 90^\circ \rightarrow$ wetting promoted if $\theta_0 > 90^\circ \rightarrow$ wetting hindered

surfactant addition (physical)

- decreases $\sigma_{LG} \rightarrow$ promotes wetting
- might increase/decrease σ_{SL} due to adsorption \rightarrow promotes/hinders wetting

enrich surface with specific atoms (chemical)

- oxygen enrichment \rightarrow promotes wetting
- treatment with plasma, corona discharge, flame; produce reactive radicals, limited permanence
- wet chemical treatment (strong bases or acids)
- fluorine enrichment \rightarrow wetting hindered
- adsorption of polymers containing F
- treatment with silanes Y-Si-(OR)₃, Y-Si-Cl₃

Charge separation at interfaces

interfaces divide electrically neutral bulk (solvent) phases \rightarrow positive & negative charges separate in the direction normal to interface

Fig. 1-3: Electrical charge separation at the interfaces of particles against their dispersion medium, water.

- no net charge in volume around the interface due to counterions
- locally, positive or negative charge dominates

electric double layer

the structure formed by surface charges & counterions @ the vicinity of an interface

electric double layer thickness

defined as the distance to charge neutrality (charged surface effectively screened out)

- water: thickness in the order of few nm
- non-aqueous media: much larger (lower ϵ_r)
 - > origin of electric charge separation?
 - structure of electric double layer?
 - electrostatic forces between surfaces?

Origins of electric charge @ interfaces

preferential adsorption/desorption of lattice ions ions of the surface lattice of crystalline colloidal particles preferentially adsorb or desorb to the surface

example: AgI crystalline particles

- I⁻ ions adsorb to the surface more strongly than Ag⁺ → surface negatively charged
- equivalent: preferential desorption of Ag* into solution
- surface potential depends on [lattice ions] in solution; can be adjusted with AgNO₃ or KI

point of zero charge: bulk [ion] that will make the potential zero (determined by titration)

specific adsorption of (foreign) charged species ions that are present in the system but are not an integral part of the dispersed phase adsorb on surface

- ionic surfactants (hydrophobic effect)
- polyvalent ions of like or opposite charge adsorb via different mech. & can neutralize or reverse charge
- polyelectrolytes (with hydrophob. groups)

Table 6-2: Ranges of *PZC*-values generally found for representative mineral oxides (in terms of pH)*

Oxide	PZC range
α -Al ₂ O ₃	8-9
Fe_2O_3	6 - 8
Fe_3O_4	6 - 8
MgO	10 - 12
MnO_2	2 - 4
SiO_2	2-3
SnO_2	3 - 4
TiO_2	6 – 7
ZnO	9 - 10
ZrO_2	5 - 7

* Approximate averages of values taken from [Kosmulski, M., Chemical Properties of Material Surfaces, Surf. Sci. Ser. 102, Marcel Dekker, New York (2001).]

15

Origins of electric charge @ interfaces (II)

ionization of surface functional groups chemical functional groups of the dispersed phase may lose or gain an $H^+ \rightarrow$ negative/positive charge

- common in polymeric particles with imbedded functional groups (e.g. from the initiator used)
- constant surface charge density
- sulfate groups: ionizable over ~ whole pH range
- weak acids (-COOH) or bases (-NH₂): degree of ionization = f(pH)

isomorphic substitution

mineral colloidal particles exchange one type of ions in their lattice with another type that has different valence but similar size

 clays: face charges negative & constant (isomorphic susbtitution); rims positive @ low pH

accumulation/depletion of e^-

- direct e⁻ transfer from one phase to another
- unoxidized metal/solution, O/W interfaces

Fig. 6-5: Electron micrograph of a mixture of a kaolinite and a negative gold sol. From [Van Olphen, H., **An Introduction to Colloid Clay Chemistry**, 2nd Ed., p. 95, John Wiley & Sons, New York, 1977.]

Interface charging in non-aqueous systems

electrostatic model of ion dissolution

- interaction of ions in a solvent is screened through solvent polarization
- polarization ~ relative dielectric permittivity ε_r (dielectric constant)
- water: $\varepsilon_r \approx 80$; alkane: $\varepsilon_r \approx 2 \rightarrow$ water polarized more strongly
- attractive potential Ψ between two charges +q & -q @ distance r

$$\Psi = \frac{1}{4\pi\varepsilon_r\varepsilon_0} \frac{q^2}{r}$$

• $\Psi \gg k_{\rm B}T \rightarrow$ charges strongly associate, dissolved state unstable

•
$$\Psi = k_{\rm B}T \rightarrow \text{Bjerrum length:} \quad \lambda_B = \frac{1}{4\pi\varepsilon_r\varepsilon_0}\frac{q^2}{k_BT}$$

distance between the ions req. for stable dissociation

aqueous systems

 Λ_B ≈ 0.7 nm, about twice the thickness of hydration shell (easy to dissolve salts in water)

non-polar media

- Λ_B ≈ 28 nm
- for stable dissociation → ions must "hide" in a structure providing a shell of substantial thickness, which is very difficult
- ions "caged" inside or adsorbed onto large structures (reverse micelles, polymers, NPs)

Models of the electric double layer

regardless of how charge separation is generated, a structure will be formed such that surface charge is neutralized by a layer of counterions in solution

Helmholtz model

- two adjacent monolayers of opposite charge ("molecular capacitor") @ distance δ
- δ: the hydrated radius of the counterions
- all of the potential drop occurs across $\boldsymbol{\delta}$
- surface charge density: $\bar{\sigma} = \frac{\varepsilon \varepsilon_0}{\delta} \psi_0$

Gouy-Chapman model

- counterion layer should be diffuse because thermal motion \rightarrow uniform concentration
- equilibrium: balance between orienting effect of surface electric field & diffusion → high [counterion] near surface, ↓ with x assumptions
 - ions point charges (they have no volume)
 - no specific adsorption of ions
 - ε_r of medium constant within the double layer
 - surface charge uniform over the surface

