Physical Chemistry of Colloids

Lecture 3, March 6, 2019 Manos Anyfanţakis Physics & Materials Science Research Unit

bubblema

Previously in ColloidsPhysChem...(I)

a fluid interface contracts \rightarrow *minimum area*

zero-thickness membrane model to quantify "contractile tendency" of fluid interfaces

interfacial tension force/length along the dividing line @ P

$$\sigma = \frac{\mathbf{d}|F|}{\mathbf{d}l} \qquad \qquad \mathbf{\delta}W = \sigma dA \qquad \qquad \text{unit (SI): N/m or J/m^2} \\ \text{more common: mN/m} \end{cases}$$

Interfacial tension may be interpreted in terms of unbalanced intermolecular forces

→ net inward attraction pulls surface molecules toward the interior; surface tries to minimize its area

Previously in ColloidsPhysChem...(II)

Attractive vdW interactions

All attractive vdW interactions vary as $1/r^6$

$V_{attractive} =$	Battractive
	r^6

Repulsive vdW interactions

- strong repulsion when electron clouds overlap (hard-core repulsion)
- manifestation of Pauli's exclusion principle

$$V_{repulsive} = \frac{B_{repulsive}}{r^{12}}$$

Previously in ColloidsPhysChem...(III)

Total interaction between two molecules: V_{attractive} + V_{repulsive}

$$V_{tot} = 4\varepsilon \left[\left(\frac{\delta}{r} \right)^{12} - \left(\frac{\delta}{r} \right)^{6} \right]$$

- δ: r for which V_{tot} = 0 (molecular diemeter)
- ɛ: depth of potential well

Previously in ColloidsPhysChem...(IV)

typically written: **D-H···A**

- **D:** H-bond donor (N, O, F, S)
- A: H-bond acceptor (N, O, F, S) possesses a lone pair of e⁻

ww2.chemistry.gatech.edu/~lw26/structure/molecular_interactions/mol_int.html

water: the perfect example of H-bonding

- each water molecule can form 4 H-bonds with surrounding water molecules
- 2 lone e⁻ pairs + 2 δ⁺ H
- reason for very high T_{boil}

- directional & with limited number of interaction partners
- strong; typical energies ~ 5-30 kJ/mol (k_BT @ 25 °C = 2.47 kJ/mol)
- \rightarrow dynamically formed & broken

Pressure difference across curved interfaces

Defining the shape & location of fluid interfaces

- -fundamental problem of capillary hydrostatics
- basis for most methods for measuring $\boldsymbol{\sigma}$
- affects motion of liquids in porous media, thermodyn. properties of bubbles & drops

Fig. 2-15: Spontaneous flow occurs from the smaller bubble (higher curvature) to the larger bubble until the spherical cap at the location where the smaller bubble started has the same radius of curvature as the final larger bubble.

Deformation of an elastic membrane

- p" (concave side) > p' (convex side)
- Δp proportional to the curvature
- larger bubble grows @ the expense of the smaller one
- flow continues until curvatures are equal

Young-Laplace equation

Pierre-Simon Laplace (1749-1827)

Thomas Young (1773 - 1829)

wikipedia

$$\Delta p = p^{\prime\prime} - p^{\prime} = \sigma \kappa$$

 Δp : pressure jump across a curved fluid interface

 σ : interfacial tension

 κ : local curvature of the interface

The curvature of a surface

Curvature of a plane curve y(x) @ Prate of change of direction (φ) with arc length (S)

$$\kappa = \frac{d\varphi}{dS} = \pm \frac{d^2 y}{dx^2} \left[1 + \left(\frac{dy}{dx}\right)^2 \right]^{-\frac{3}{2}}$$

for a circle (Ø 2R): $\kappa = \pm \frac{1}{R}$

radius of circle of curvature @ P: radius of curvature of y(x) @ P

Curvature of a surface two orthogonal planes passing through normal @ POI

planes cut surface in two plane curves

$$\kappa = \pm \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

R₁, **R**₂: principal radii of curvature

General expression

$$\kappa = \pm \frac{\left(\frac{\partial^2 z}{\partial x^2}\right) \left[1 + \left(\frac{\partial z}{\partial y}\right)^2\right] - 2\left(\frac{\partial z}{\partial x}\right) \left(\frac{\partial z}{\partial y}\right) \left(\frac{\partial^2 z}{\partial x \partial y}\right) + \left(\frac{\partial^2 z}{\partial y^2}\right) \left[1 + \left(\frac{\partial z}{\partial x}\right)^2\right]}{\left[1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2\right]^{3/2}}$$

$$i = z(x,y)$$

Curvatures of geometries of special interest

many surfaces of interest possess certain symmetries \rightarrow simplified expressions for κ

Spheres or sperical caps any normal to the surface passes through center

$$\kappa = \pm \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{2}{R}$$

Cylindrical surfaces

any normal to the surface passes through & is normal to the axis of the cylinder

1st plane: circle with R 2nd plane: rectangle

$$\kappa = \pm \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{1}{R}$$

Derivation of Young-Laplace equation

small patch (ADBC) of surface centered @ P & enclosed by a curve @ a distance p from P

p is measured along the surface & is taken to be very small

phase (") is on the lower (concave) side of the patch; phase (') is on the upper (convex) side

orthogonal lines AB and CD made by a pair of orthogonal planes passing through \hat{n}

net upward (+ \hat{n} direction) force on the patch $F \uparrow = (p'' - p')\pi\rho^2$

net downward ($-\hat{n}$ direction) force on the patch

$$F \downarrow = -\sigma \pi \rho^2 \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

Methods for measuring surface tension

Basis: solutions to the Young-Laplace (Y-L)

Geometric methods

- based on direct determination of interface shape or position
- finding a σ value that produces the best match between a measured interfacial profile & a solution of the Y-L eq.

Force methods

- based on the measurement of a force (or mass, volume, pressure) & its comparison with the value computed from the Y-L eq.
- usually solid object is suspended in or detached from a fluid interface or drop/bubble detached from an orifice
- interfaces of high degree of symmetry used (axisymmetric/cylindrical)

Geometric methods

- capillary rise
- sessile drop (captive bubble)
- pendant drop (pendant bubble)
- spinning drop
- oscillating jet
- contracting circular jet

Force methods

- du Noüy ring detachment
- Wilhelmy plate (or rod)
- Langmuir barrier
- drop weight (volume)
- maximum bubble pressure

Coffee break

Why Mario must add soap to water to make bubbles? How large can the bubbles be?

Capillary rise

determination of meniscus position of a liquid in a tube (\emptyset r)

 $\theta < 90^{\circ}$ $\rightarrow \text{ concave meniscus}$ $\rightarrow p_{up} > p_{down}$

equilibrium

→ meniscus rises until p_{down} can support the meniscus curvature

Fig. 2-38: The capillary rise method for measuring surface tension. (a) h is the equilibrium rise height, (b) If the meniscus is spherical, but the contact angle is > 0°, the radius of the meniscus is $R = r/\cos\theta$, where r is the radius of the capillary, and θ is the contact angle, (c) if the meniscus is flattened by gravity, the radius of the curvature at its apex is b > r.

for small $r \& \theta = 0^{\circ}$ gravity does not deform the meniscus

$$\Delta p = p_{up} - p_{down} = p_o - (p_0 - \rho gh) = \rho gh$$

$$\Delta p = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{2\sigma}{r}$$

$$\sigma = \frac{\rho grh}{2}$$

h: eq. rise height
ρ: liquid density
g: grav. acceleration
13

Pendant drops & captive bubbles

Pendant drop (captive bubble): a drop (bubble) suspended from a needle (Ø 2r) in a bulk fluid phase

optical system used to take an image of the drop software performs drop shape analysis

Drop shape: betermined by interfacial tension - gravity competition

du Noüy ring & Wilhelmy plate

measurement of force required to detach a (Pt) ring (\emptyset 2r) from a liquid surface

maximum in measured force against height of ring above undisturbed surface

beyond max. force
→ meniscus contracts before final detachment

max. downward force
$$F \downarrow = \frac{4\pi r\sigma}{F_c}$$

r: ring radius F_c : correction factor

measurement of downward force on an partially immersed object

 $F_{net} = \sigma(2d + 2t) - (\rho ghtd)$

Maximum bubble pressure

formation of a bubble from a nozzle tip (\emptyset 2r)

 $\boldsymbol{p}_{\text{max}}$ required when radius of curvature of the bubble is minimum

hemispherical surface
$$\rightarrow p_{max} - p_{liq} = \frac{2\sigma}{r}$$

advantages

- very rapid method (*ms* or less); can measure *dynamic* σ
- formed surface is fresh

The hydrophobic effect (I)

Hydrophobic interaction (IUPAC)

Tendency of hydrocarbons (or of lipophilic hydrocarbonlike groups in solutes) to form intermolecular aggregates in an aqueous medium, & analogous intramolecular interactions.

The name arises from the attribution of the phenomenon to the apparent repulsion between water & hydrocarbons. However, the phenomenon ought to be attributed to the effect of the hydrocarbon-like groups on the water-water interaction.

responsible for:

- the separation of oil-water mixtures into the two components
- biological effects: cell membrane & vesicle formation, protein folding, insertion of membrane proteins into the nonpolar lipid environment & protein-small molecule associations

hydrophobes: substances for which the hydrophobic eff. is observed

vyeroprose chem.libretexts.org ↑ water MOLECULE

Isolated Protein

Hydrophobic

The hydrophobic effect (II)

thermodynamic factors giving rise to the hydrophobic effect: complex & still not completely understood

 $\Delta G = \Delta H - T \Delta S$

Small hydrophobic inclusions

- number of H-bonds retained but degree of freedom in how to form them reduces
- "structuring" of water molecules around the inclusion
 - \rightarrow S is reduced, $\Delta G > 0$

Large (>1 nm) hydrophobic inclusions

- on average: one H-bond (~ 10 k_BT) per water molecule broken
- replacement of H-bond with vdW interaction (lower inter. energy)

Nature **2005**, 437, 640

Figure 1 | Configurations of liquid water molecules near hydrophobic cavities in molecular-dynamics simulations.

High hydrophobe concentration

 segregation of water & hydrophobic species (phase separation)

Surfactants or amphiphiles (I)

surfactant: short for surface active agent (Langmuir); a substance that is surface-active: adsorbs at an interface & reduces σ

amphiphile: a substance that has at least two portions segregated from one another, one being hydrophilic (head) & the other hydrophobic (tail) $(\alpha\mu\phii: "from both sides"; \phiiloc: "friend")$

- lipid: long chain aliphatic hydrocarbons (fats) & derivatives originating in living cells; only some, such as fatty acids, are also surfactants
- detergent: generally refers to synthetic surfactants used in cleaning agents

often classified according to head gro	an	$P^{(1)}$ $C^{(2)}$ $P^{(2)}$ $P^{(1)}$
ionio	Table 3-3: Some typical surfactant head groups	
ΙΟΠΙC	-OH	Hydroxyl
	-COOH (low pH)	Carboxyl
non-ionic	-COO ⁻ (high pH)	Carboxylate
(C chain in head aroup interrupted	$-SO_4$	Sulfate
$b_{i} \cap c_{i}$	$-SO_3^-$	Sulfonate
by O atoms \rightarrow polarity	$-H_2PO_4^- \pmod{pH}$	Phosphate
	-NH ₂ (high pH)	Amino
zwitterionic	$-NH_3^+$ (low pH)	Ammonium
low nH: cationic	$-N(CH_3)_3^+$	Trimethylammonium, or Quaternary ammonium
	-(OCH ₂ CH ₂)OH	Polyoxyethylene, or polyethylene oxide
high pH: anionic		` \ ` \ 19

Surfactants (II)

key feature of surfactants: segregation of hydrophilic & hydrophobic moieties

hydrophobic hydrophilic dataphysics-instruments.com

hydrophilic head

can form H-bonds with water \rightarrow "immerses" in aqueous phases

hydrophobic tail

cannot form H-bonds with water → "immerses" in oil phases or "sticks" to hydrophobic solids

Fig. 3-16: Schematic of surfactant adsorption from aqueous solution, both to the air-water surface and the water-solid interface of the container wall. The "iceberg" of structure water surrounding the hydrophobic tails in solution is depicted.

glucose not a surfactant because hydrophilic hydroxyl groups are not segregated from the hydrocarbon structure

20

Surfactants (III)

